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D E V E L O P M E N T  OF  Q U A S I H A R M O N I C  M O T I O N S  

O F  A G A S - S T R E A M L I N E D  L I Q U I D  F I L M  
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a n d  A.  A .  T o c h i g i n  
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Quas iharmonic  wave motions of a thin liquid film flowing in a ver t i ca l  plane due to gravitational 
force ,  capi l la ry  forces ,  and a tangential s t r e s s  acting on the f i l m - g a s  boundary a re  considered.  
The region of exis tence  and spec t ra l  cha rac t e r i s t i c s  of the quasiharmonie  wave solutions in 
di f ferent  f i lm-mot ion r eg imes  (cocur ren t  and countercurrent)  a re  found. 

w Let  us cons ider  the motion of a thin film of a v iscous  liquid flowing in a ver t ica l  plane, under the 
influence of gravitat ional  and capi l lary  forces  and of s t r e s s e s  ar i s ing  on the film surface  as it is s t reaml ined  
by gas. As in [1, 2], we rep lace  the c losed combined motion problem of the gas and liquid (in the film) by mo-  
tion problems of a single film only. The effect  of the gas on the film in the problem thus reduced is descr ibed  
by specifying the tangential (and normal)  s t r e s s e s  on Lhe g a s - f i l m  boundary. The exact  form of these s t r e s s e s  
is unknown within the context of this procedure .  We assume,  as in [1, 2], that the tangential s t r e s s  on the film 
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sur face  is constant  throughout the length of the f i lm (this is t rue  if  the wave ampli tude on the fi lm sur face  

is suff icient ly low). 

Thus the tangential  s t r e s s  will occur  in the p rob lem as a given p a r a m e t e r ,  and an e s t ima te  of i ts  
magni tude under  actual  conditions can be c a r r i e d  out by means  of known ( semiempi r i ca l )  fo rmulas  re la t ing  
the tangential  s t r e s s  to gas ve loc i ty  (cf. for  example ,  [31). 

In this formulat ion,  f i lm motion is desc r ibed  by the equations 

--=dr § vh o%-= = v --o~i § vAv~ § g~; 

with boundary conditions 

ax i 

~ = 0  when 7~0 ;  

- -  o z + -  - o ;  
v~ (h) = aT v~ (h) "~-x' 

--~ ni 

where  ~=h~(x, ~. t t e r e  p and v a r e  liquid densi ty  and v i scos i ty ;  a is the coefficient  of su r face  tension of 
the liquid at  the boundary with the gas,  g is the acce l e ra t ion  of gravi ty ,  ~'ik is the s t r e s s  t enso r  on the 
f i l m - g a s  boundary,  and R is the radius  of curva tu re  of the f i lm sur face .  The coordinates  a r e  se lec ted  

~ (x ~ such that  the f i lm occupies  the region 0 <~-< ~(~7, ~ ,  -r  <x < ~ is coordinate);  the gas occupies the r e -  
gion ~> h'bT, ~; d imensional  v a r i a b l e s  a r e  given the index ~. 

We se l ec t  s t e ady - s t a t e  mot ions  in the f o r m  of long plane waves  f rom all  poss ib le  mot ions  of the film. 
F o r  such waves ,  the p rob lem reduces  to the equation [1, 2, 4] 

dah " ] (h'l dh c 2 -]- , ~ ~ ~- eg (h), l (h) = 5h a6q2 5h 3cT20 T' 3qT40h 9rZhlc0 ' (1.1) 

c q 3T 
g ( h ) = - - l +  h~ h3 4h 

with the additional condition 

< h ) • t ,  where <. . .> = lim i [ 
TI 

ave raged  over  the length of the fi lm. 

Here  h, c, ( -q) ,  and T a r e  p rope r ly  d imeas ion less  va r i ab l e s  of f i lm th ickness ,  "phase"  wave veloci ty ,  
flow ra te  (in a f r a m e  bound to the moving wave), and the tangential s t r e s s  on the sur face .  Our notation a re  
r e l a t ed  to the data of the p rob lem by the equations 

27v 4 [ a ~1/2 
= w ( x -  ct); = i T )  , 

where  1 / W  2 = 9 t~2o-/p ~.+ (h~ s is the Weber  number ,  g+ = g - ( l i p  ) (dp+/dx~), and p+ is gas p r e s s u r e .  Mean fi lm 
thickness  (~ )  is se lec ted  as the sca le  for  m e a s u r i n g  lengths, g+ <~'~2/3~ is se lec ted  for m e a s u r i n g  v e lo c -  
i t ies ,  and ~pg+(h)  for m e a s u r i n g  s t r e s s e s .  

Equation (1.1) di f fers  f rom the cor responding  equation f rom [1, 2], in that other  sca les  and d imen-  
s ionless  p a r a m e t e r s  were  se lec ted  (tangential s t r e s s  on f i lm sur face  was r e f e r r e d  to gravi ta t ional  force  
and was posi t ive  as  gas moved  downward and negat ive as it moved  upward). 

w To find the per iodic  solution of the p rob lem (1.1), (1.2) we apply a method used for  calculat ing 
wave mot ions  of a f r ee ly  draining film [5]. We f i r s t  in tegrate  Eq. (1.1) over  T f rom some fixed value ~'0 
to ~-. Since the t e r m  f(h)(dh/d~') is a total der iva t ive  and can the re fo re  be wri t ten in the fo rm f(h)(dh/d~') = 
(d/dr) [dV (h) / dh], we obtain 

d2h c~V (h) 
d~--~ "-k ~ = eF (h, T), (2.1) 

where  

F (h, ~) -- i g (h) d~. 
To 
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Equation (2.1) can be in t e rp re t ed  as  an equation that de sc r ibe s  mechanica l  motion occur r ing  due to 
the nonl inear  potent ial  force  0V/dH and nonpotential  force  F(h, r) .  In this in terpre ta t ion ,  the se t  of p e r i -  
odic mot ions  found is s imply  the se t  of osc i l l a to ry  mot ions  occur r ing  in a "potential  pi t"  V(h) and subject  
to the ef fec t  of a "nonpotential  fo rce"  F(h, r) .  

It  is c l e a r  f r o m  physical  concepts  that the prof i le  of  these "osc i l la t ions"  when e<< 1 will be c o m -  
ple te ly  de te rmined  by the fo rm only of the potential  pit, while the role  of the nonpotential force  F(h, r) be-  
comes  unders tandable  if  we note that  the nonpotential  fo rce  F(h, ~') will not typical ly  be comple ted  during 
an osci l la t ion per iod  if  s t r i c t l y  per iodic  solut ions ( l imit  cycles)  a r e  found. 

Thus we m a y  formula te  the method of cons t ruc t ing  the per iodic  solutions of the p rob lem (1.1), (1.2) 
when ~ << 1, which, on the one hand, defines the se t  of all  osc i l l a to ry  solutions in the potential  pit  V(h), and, 
on the other  hand, e l imina tes  those for  which the " force  ef for t"  F(h, r) per iodica l ly  is nonzero and thus 
will f inally turn out to be nonperiodic.  Since the "mean  force  ef for t"  F is defined by <(dh/dT)F), using Eq. 
(2.1) we obtain an equation defining the ru le  for  d i sca rd ing  l imi t  cyc les :  

/dh F ~  = h (~) <g (h)> - -  <hg (h)> = 0. (2.2) 
\ e ~  / 

Since (g) and (hg) a r e  constants  while h(7) is a va r i ab le ,  condition (2.2) will hold if each of the t e r m s  in 
the left  side of Eq. (2.2) independently van ishes ;  i .e. ,  condition (2.2) is equivalent  to the two conditions 

(h-a> ar 0 = <g (h)> = - -  i + c <h -2> --  q ,  - -  -~- <h-~>; (2.3) 

0 <hg(h)> - - i  4- c ( h - t > - -  -2 3/" = = q <h ) - - - ~ - .  (2.4) 

Conditions (2.3) and (2.4) can a lso  be obtained d i rec t ly  f rom Eq. (1.1). In fact ,  if  we a s s u m e  that the 
solution h(r) in Eq. (1.1) is  bounded and does not vanish  (the f i lm does not adhere  to the wall), we obtain 
Eq. (2.3) by ave rag ing  Eq. (1.1) with r e s p e c t  to the va r i ab le  r ,  taking into account  the fact  that  total  d e r i v -  
a t ives  occur  on the left  in Eq. (1.1). We obtain Eq. (2.4) by ca r ry ing  out the s ame  ave rag ing  procedure  
a f t e r  f i r s t  mult iplying Eq. (1.1) by h(~-), noting that  h(dah/dr 3) and hf (h)(dh/dr) r e m a i n  total der iva t ives .  

Le t  us give a concre te  physica l  meaning,  beyond the in te rpre ta t ion  above,  to the integral  equations 
(2.3) and (2.4). I t  is c l e a r  f r o m  studying the occu r rence  of the t e r m s  in the function g(h) in Eq. (1.1) in 
der iv ing this equation f rom the N a v i e r - S t o k e s  equations and the boundary conditions that  g(h) is (withina 
constant  factor)  the sum of the gravi ta t ional  force  and fr ic t ional  force  on the wall,  and the in teract ion force  
with the gas  act ing on a unit th ickness  of the f i lm c r o s s  section.  This makes  c l ea r  the origin of the ru le  
of d i sca rd ing  the l imi t  cyc les  (2.3) and (2.4), which shows that  forces  act ing on the f i lm in s t eady- s t a t e  
mot ion will be balanced on the ave r age  throughout  the length of the f i lm. 

Le t  us cons ider  the cons t ruc t ion  of per iodic  solutions of the initial  p rob lem and the case  ~<< 1 which 
is of m o s t  i n t e r e s t  for  appl icat ions.  The solution of the p rob lem in this case  will be in the fo rm of an 
a sympto t i c  decomposi t ion  with r e s p e c t  to the smal l  p a r a m e t e r  e, 
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h (~) = ~ e~h~ (~). 
*a~O 

We l imi t  ourse lves  to a f i r s t  approximation and give h 0 the previous meaning for h(~'), leaving us in 

this approximation with 
dab dh d~ ~ / (h) ~ -  = 0. (2.5) 

Equations (2.5) r emains  nonlinear ,  and the nature  of the decomposit ion of conditions (2.3) and (2.4) 
does not impose a p r io r i  cons t ra in ts  on the amplitude. 

Equation (2.5) for  given T has a f i ve -p a r am e te r  fami ly  of solutions (three constant integrat ions and 
the p a r a m e t e r s  q and c). It is nece s sa ry  to el iminate f rom this family  only those const ra ined periodic so-  
lutions that sa t is fy  conditions (2.3) and (2.4). Moreover ,  the solution of the problem must  sat isfy condition 
(1.2) as well as a condition following f rom the a r b i t r a r i n e s s  of select ing the origin on the r axis (initial 
wave phase). These  conditions distinguish a o n e - p a r a m e t e r  (for eve ry  value of T) set  of wave solutions 
f rom the f i ve -pa rame te r  family.  

w We obtain the two equations 

3 
- -  i § c - -  q - -  - T  T § 0 ($~) = 0; 

( 3) 
- -  2c--~ 3q-~- - (  T < ~ : > + 0 ( ~ 4 ) = 0 ,  

for  low-amplitude solutions,  r epresen t ing  h(~-) in the form h = 1+ ~(~'), ( r  = 0 [thereby a l ready  satisfying 
condition (1.2)], and sa t i s fy ing  the remaining two conditions (2.3) and {2.4). 

We find c = 311+ (T/2)]  + 0(r and q = 2+ a/iT + 0(~2) by solving these equations for  c and q. F o r  the 
wave number  we have 

k2 ~ 6 ~ c 2 3cr 3qT 9T2 . ^ ( , T )  
Y q  -- 5 -~5 ~- 40 ~5-~U(~2)=3  i ~  -~0(~0~), 

a f te r  substi tuting these equations in Eq. (2.4). When T < - 2 ,  this equation leads to imaginary  values  of the 
wave number,  so that the periodic quasiharmonic  solutions do not contain low-amplitude solutions (as will 
be proved below, all quasiharmonic  s ta t ionary  waves also vanish). 

We integrate  Eq. (2.5) over  T twice in accordance with the method of cons t ruct ing  the periodic s o ,  
tutions. We obtain 

- ~  ~ - t - V ( h ) : = O ,  V I 40 ( h l n h - - h ) - - - ~ . -  320 ~' A l h + A 2 "  (3.1) 

In accordance  with the in terpre ta t ion given above, V(h) plays the role  of a potential and t/2 (dh/d~-) 2, 
that of kinetic energy.  

It is convenient to introduce the minimal  and maximal  film thicknesses in the wave profi le  h(r) in 
place of the constants of integrat ion A t and A 2. Denoting them by h i and t12, we have V(h 1) =V(h 2) =0. The 
equation for V(h) then takes the form 

V (h) ---- (I) (h) - -  �9 (h,) (h2 --  h) § q~ (h.z)..(h - -  h , )_  
h2 - -  hi 

where 

3q2 -1- [3 qT c~ ) (h In h --  h) 3cT h2 3r~h a 
r (h) -~ 5h - -  \ 40 5 - -  2-0- '~ 320 �9 

We determine  <h TM) f rom Eq. (4.1) using the equation 

i !h. ~(~) dz ~- Ira, <am> ~--~-  -~0 where Ira ~" h, ~ ]/~hmdh ' 

and substi tute (hm) in Eqs. (1.2), (2.3), and (2.4), obtaining the sys tem of equations 

(3.2) 
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Zo (z_=- z_3) + 3 T (r_V_~ -z0 :-3) 
Iz == Io; c ~ 

122 -- I t I 3  

3 i2  
Xo (z_~  - x_~) + ~ r ( _~ - zoz_2) _ : w  V ~ ,  

q =  i2 ; k ~  To --2 - -  l - - i  I--:3 

(3.3) 

to de t e rmine  hi, 112, c,  q, and the d imens ion less  wave number  k; this s y s t e m  of equations was solved on a 
computer .  The solution can be theore t i ca l ly  c a r r i e d  out by specifying a se t  c, q, hi, and h~ for  fixed T, 
a f t e r  which the in tegra l s  I m a r e  ca lcula ted  using Eqs.  (3.2). The se t  c,  q, h 1, andhzvar ies  until it is s e l f -  
consis tent ,  i .e . ,  until the s y s t e m  (3.3) becomes  an identity. The collect ion of such  se l f - cons i s t en t  se t s  
turns  out to be a o n e - p a r a m e t e r  col lect ion for  eve ry  value of T. 

Such an o rde r  of  computat ion would be highly c u m b e r s o m e  because  of the l a rge  number  of va r i ab l e s  
occur r ing  in the set .  The re fo re ,  t r ans fo rma t ions  sharp ly  shor tening the volume of computat ions were  f i r s t  
c a r r i e d  out. These  t r ans fo rma t ions ,  though differ ing for  different  valuat ion domains of T, a r e  of the s ame  
type and, as  a resu l t ,  we will l imi t  ou r se lves  to indicating the i r  f o r m  only in the region T > 0. We in t ro -  
duce the new v a r i a b l e s  0 = (c3/2/~-)5qD " and H= (c /q )h  and let  u = 3 q T / 8 c  2. Then Eq. (1.1) has the fo rm �9 

da Hde 3 ~_ .~.~ f t2 i+2U~H + 2 u - - H ) = 0 ,  (3.4) 

i .e . ,  it contains only the single p a r a m e t e r  u in place of the three  p a r a m e t e r s  c, q, and T, where  u c o r r e -  
sponds to the p a r a m e t e r  T. The unknown p a r a m e t e r s  a r e  now only the va r i ab l e s  H l and H2, the minimal  
and max ima l  f i lm th icknesses  in the wave prof i le  H(0 ). Eqs.  (1.2), (2.3), and (2.4) can be combined into 
a s ingle condition and containing only u and ( i t  m} as var iab les  connecting H 1 and H2; 

2u - - ( H  -z) + (H-~)=/H}[2u(H-1)--(H-~) -{- (H  -s} ]. (3.5) 

The las t  two additional conditions ( together with the equation u = 3 q T / 8 c  2) allow us to find c, q, and 
T a f t e r  solving the p rob lem (3.4), (3.5). The o rde r  of the computat ions is defined as  follows. A set  (Hi, H 2) 

Hz 
is spec i f ied  for a fixed value of u and the in tegra ls  K = ~ //._~dH_ " ~, I/ ---- F (-H) a r e  calculated.  The set  (Hi, tI 2) v a r i e s  

until the s e l f - cons i s t ency  condition (3.5) is sat isf ied.  The collection of such se l f - cons i s t ency  se ts  (Hi, I-~) 
fo r  fixed u cons t i tu tes  a o n e - p a r a m e t e r  fami ly ,  that is ,  a curve  on the (Hi, H2)-plane. 

Resu l t s  of the calcula t ions  a r e  depicted in Figs .  1-3. F igure  1 r e p r e s e n t s  typical  dependences of 
the d imens ion less  ampli tude on the d imens ion less  wave number  for  three  values  of T. Clear ly ,  only a 
compa ra t i ve ly  n a r r o w  s pec t rum  of the wave number s  cor responding  to s ta t ionary  quas iharmonic  wave 
mot ions  of the f i lm exis t s  for  each  value of the tangential  s t r e s s .  The hatched regions  in Figs .  2 and 3 in- 
clude p r e c i s e l y  the waves  f rom this spec t rum.  F igures  2a, b, and c demons t r a t e  the evolution of the spec -  
t ra l  wave c h a r a c t e r i s t i c s  (amplitude, wave numbers ,  and phase velocity)  as the tangential  s t r e s s  v a r i e s .  
Theore t ica l  dependences of wave ve loc i t i e s  on gas veloci ty  under  cocur ren t  and coun te rcur ren t  conditions 
a r e  c o m p a r e d  in Fig.  3 to expe r imen ta l  data taken f rom [6]. Tangential  s t r e s s  (and Reynolds number  Re) 
is converted to gas velocity in the tube according to the equations 

where  ~ is the mean  gas ve loc i ty  in the tube, p~ is its density,  k e is the coeff icient  of fr ict ion in a tube 
with i r r e g u l a r i t i e s  (the equation for  ~,(~ was taken f r o m  [7]), e is wave ampli tude,  and d is tube d i ame te r :  

C 7 CTEI/$e O 
8O I 

60 c~=~  

~ 0  ~ I I l ! l t i l l l ~ t l~ l l I i  t I t I~IINIII I I I I ID h l l ( I I l l  I~ 

f ' I C~ 
2 0  I ' I 

-600 ' -'200 0 200 6 0 0  V, Cm/sec 

Fig. 3 
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It  is  a s s u m e d  that  waves  play the ro le  of i r r e g u l a r i t i e s  here ,  s ince,  as in [1], the dimension of the i r r egu l a r i t i e s  

in the equation for  kt~ is r ep laced  by half  the ampli tude.  

In conclusion,  le t  us indicate  the boundar ies  within which the theore t ica l  conclusions hold. They a r e  de-  
t e rmined  by the r e q u i r e m e n t  that  the wave n u m b e r  k [ k ~ l ,  which is the bas i s  for der iv ing  Eq. (1.1)], the pa -  
r a m e t e r  e (e~ 1, which is the basis  for  cons t ruc t ing  the solution), and the ampl i tude a re  al l  smal l ,  al lowing us 
to d i s r e g a r d  the dependence of tangential  s t r e s s  on wave profi le .  By imposing these r e q u i r e m e n t s  on e, k, and 
~, we find that  these  r e q u i r e m e n t s  hold when Re is less  than 104-105 if 10 <Re < 100 in the case  of water ,  for  
example ,  under  downs t ream cocur ren t  condit ions.  
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D R O P  E V A P O R A T I O N  IN A T U R B U L E N T  G A S  J E T  

V .  F .  D u n s k i i  a n d  Y u .  V.  Y a t s k o v  UDC 532.517.4 

Evapora t ion  of a s e m i d i s p e r s i v e  drop s y s t e m  in a turbulent  g a s  jet  is considered.  A method 
for  calcula t ing drop evapora t ion  in a turbulent  gas jet is p roposed  based on a s impl i f ied  so lu-  
tion of the sca t t e r ing  p rob lem for  an evapora t ing  admixture .  Evapora t ion  of wa te r  as  it  is 
a tomized  in a turbulent  a i r  jet  is exper imenta l ly  studied. Approx imate  a g r e e m e n t  is obtained 
between the r e su l t s  of the calcula t ions  and exper iments .  

In con t r a s t  to evapora t ion  p r o c e s s e s  of an individual drop,  which have been widely studied and a r e  a m e -  
nable to calculat ion,  actual  evapora t ion  p r o c e s s e s  of sy s t ems  of drops  have been hard ly  studied at  all. 

The concept  of two evapora t ion  r e g i m e s  of drop s y s t e m s  in a turbulent  gas jet,  namely ,  kinetic and dif-  
fusion, has  been introduced [1]. The r a t e  of evaporat ion of the s y s t e m  is de te rmined  in the kinet ic  r e g i m e  by 
the kinet ic  evapora t ion  of an individual drop,  and by the r a t e  of diffusion of the externa l  gas as  a whole in the 
diffusion reg ime .  The de terminat ion  of the evapora t ion  r e g i m e  in a turbulent  drowned jet  was c a r r i e d  out by 
means  of the E c r i t e r ion  [1]. 

Kinet ic  drop evapora t ion  conditions a r e  rea l i zed  when E>> 1 and diffusion condit ions,  when E << I .  

Drop evapora t ion  in a turbulent  drowned jet  in the kinetic r eg ime  has been cons idered  [2]. It was shown 
that i r r e v e r s i b l e  e ject ion of drops  f r o m  the jet  core  in the slowly moving pe r iphe ry  a t  which the evaporat ion 
p r o c e s s  is consummated  is cha r ac t e r i s t i c  for  the sca t t e r ing  of an evaporat ing impur i ty  in a turbulent  jet. As 
a resu l t ,  s ca t t e r ing  of the evapora t ing  impur i ty  occurs  m o r e  rapidly  than of the nonevaporat ing (conservat ive)  
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